Ads 468x60px

Wednesday, November 5, 2014

Form Of And Function Of Military Antennas

By Patty Goff


The antennas are characterized by a number of parameters. Radiation pattern is a graphic representation of radiation characteristics of an antenna according to direction (azimuth and elevation coordinates). Most often represent the radiated power density, but also can find diagrams or phase bias (military antennas). Considering the radiative pattern, we can make a general classification of types of antenna and we can define the directivity of a receiver (isotropic antenna, directional, bi-directional, omni).

This parameter is defined as the ratio between the maximum radiated power in a geometric direction and power radiated in opposite direction. When this relationship is reflected in dB scale, the ratio F / B (Front / Back) is the difference in dB between the maximum radiation level and radiation level of 180 degrees. This parameter is especially useful when interference back is critical in choosing the antenna that we use.

A typical loop antenna is made of copper, in resonance with a variable capacitor when transmitting and can withstand high voltages. The transmission can take many amps and the voltage across the capacitor several kilovolts. Loops of copper are more effective than lower managers, due to the large flow. Loops are circular and more efficient than squares, an alternative is octagoner that are easier to manufacture.

Bandwidth is a frequency range in which the antenna parameters meet certain characteristics. Can define impedance bandwidth, polarization, gain or other parameters. Directivity is the impedance of masts at its terminals. It is the relationship between the voltage and the input current. Z = frac V I. The impedance is a complex number. The real part of an impedance is called mast resistance and the imaginary part is reactance.

A transmitter with more than about 3 items are usually less sensitive in a circle slice perpendicular towards the main direction of a jet and therefore one can put antennas in close proximity to a base station. The distance between the antennas should be at least 1 / 2-1 of main wavelengths used. Further away than about 10 wavelengths (far field) affects largely the antenna radiation pattern, but it can affect radio propagation or radio broadcast.

There are three basic types of transmitters: wire, aperture and planar antennas. Also, clusters of these aerials (arrays) are usually considered in the literature as another basic type of antenna. Wire transmitters are variants whose radiating elements are wire conductors having a negligible section relative to wavelength employment.

The dimensions are generally a maximum wavelength. It is widely used in the bands of MF, HF, VHF and UHF. You can find wire antenna arrays. Examples of wire antennas are: the vertical monopole, the dipole and its evolution, the Yagi, loop antenna and the helical antenna is a special type of antenna that is used primarily on VHF and UHF. It describes a helix conductor, thereby producing a circular polarization.

The characteristics of an antenna depends on the relationship between the dimensions and the wavelength of a signal transmitted or received radio frequency. If the masts dimensions are much smaller than the wavelength are called elementary antennas, whether they have dimensions of order of a half wavelength resonating and if its size is much larger than the wavelength are directives.




About the Author:



0 comments:

Post a Comment

Share on Facebook

Email Newsletter